Life Cycle Assessment (LCA) overview

- "cradle to grave" environmental accounting
- ISO standardized:

 the "compilation and evaluation of the inputs and outputs and the potential environmental impacts of a product system throughout its life cycle" (ISO 14040) 10010

LIFE CYCLE

ASSESSMENT

Life Cycle Assessment (LCA) overview

- "cradle to grave" environmental accounting
- ISO standardized:
 - the "compilation and evaluation of the inputs and outputs and the potential environmental impacts of a product system throughout its life cycle" (ISO 14040)

1000

LIFE CYCLE

ASSESSMENT

- <u>"inputs & outputs"</u>:
 - natural resources & materials
 - energy carriers
 - Products & co-products
 - emissions, waste

Life Cycle Assessment (LCA) overview

- "cradle to grave" environmental accounting
- ISO standardized:
 - the "compilation and evaluation of the inputs and outputs and the potential environmental impacts of a product system throughout its life cycle" (ISO 14040)
- <u>"inputs & outputs"</u>:
 - Materials & resources
 - energy carriers
 - Products & co-products
 - emissions, waste

M | CSS

• Energy use

model fat

• global climate change potential

LIFE CYCLE

ASSESSMENT

- land use
- water use
- Eutrophication potential
- Acidification potential
- human toxicity, eco-toxicity

Cradle-to-grave

Cradle-to-grave

Cradle-to-farm gate

... challenging, but has accelerated

(web of Science search, June, 2015) with manual culling

Cradle-to-grave

Cradle-to-farm gate

... challenging, but has accelerated

- Hundreds of food LCAs exist in the literature
 - majority from Europe
- For most commodities, farm impacts dominate
- Beyond GHGE and energy use, strong geospatial dependence

Greenhouse gas emissions from farming vary considerably by food...

INT | CSS

Approach

Approach

Approach

Literature review to populate database

- Literature considering environmental impact of food production
 - Using LCA methods
 - 2005-2016
 - in English
 - public domain
- Adjusted basis to per "kg food" ("kg edible boneless weight")

LCA Food Lit Characterization

- 805 "entries", 193 unique sources
- 60% on food production in Europe; 17% from N. America

Examples of FCID foods	# of entries averaged	Average emission factor (kg CO ₂ eq/ kg)	Standard deviation	
beef	95	33.1	12.6	
Wheat, flour	3	0.36	0.06 (all flours)	
kale	2	0.12	0.09 (all brassicas)	

Examples of FCID foods	# of entries averaged	Average emission factor (kg CO ₂ eq/ kg)	Standard deviation	
beef	95	33.1	12.6	
Wheat, flour	3	0.36	0.06 (all flours)	
kale	2	0.12	0.09 (all brassicas)	
nectarine	0 (tree fruit=59)	0.26	0.22	

Examples of FCID foods	# of entries averaged	Average emission factor (kg CO ₂ eq/ kg)	Standard deviation	
beef	95	33.1	12.6	
Wheat, flour	3	0.36	0.06 (all flours)	
kale	2	0.12	0.09 (all brassicas)	
nectarine	0 (tree fruit=59)	0.26	0.22	

proxy assignments

51% of FCID foods for GHGE 62% for energy demand

Minor contribution to diet GHGE from proxies

Results at the mean of population

		Consumed		Food loss contributions		Consumed + all losses	
		Mean	SE	Retail losses	Consumer losses	Mean	SE
GHGE (kg CO_2 eq. per capita)	per day	3.6	0.04	0.3	0.9	4.7	0.05
	per 1000 kcal	1.7	0.01	0.1	0.4	2.2	0.02
Energy Demand (MJ per capita)	per day	18.9	0.2	1.4	4.9	25.2	0.3
	per 1000 kcal	8.9	0.07	0.7	2.4	12.0	0.1

Distribution of GHGE from production of nationally representative 1-day diets

Distribution, showing food impact factor variability

Distribution, showing food impact factor variability

Distribution, showing food impact factor variability

Hypothetical diet shift: top quintile to "average emission diet"

Hypothetical diet shift: top quintile to "average emission diet"

Hypothetical diet shift: top quintile to "average emission diet"

Percent contributions from food groups to total GHGE

Percent contributions from food groups to total GHGE

Caveats

- Only considering farm gate impacts
 - Including food processing and packaging would increase average carbon footprint an estimated 27%
 - Transportation adds ~ another 5%
- Food production emission factors are not U.S. specific (data not currently available)
- Based on 1-day diets, so distributions more dispersed than usual diets

