Presenter

Aruni Bhatnagar, PhD Director Diabetes and Obesity Center University of Louisville

For science. For action. For health.

CARDIOVASCULAR DISEASE, THE ENVIRONMENT, AND CLIMATE CHANGE

Environmental Cardiology

- Cardiovascular disease is an inherently environmental disease
- Environmental influences play major roles in CVD
- Risk is imparted from the natural, built, personal, and community environments
- The cardiovascular system is particularly vulnerable to environmental air pollutants

CVD and Air Pollution

Particulate Air Pollution

Geographic Distribution of PM

Circ Res <u>99</u>, 692, 2006

Diabetes Prevalence and $PM_{2.5}$ for US Counties

Diabetes Care <u>33</u>, 2196, 2010

Do Environmental Exposures Affect CAC Levels?

Primary End Points: Circulating CACs and urinary acrolein metabolite <u>HPMA</u>

	Categorical Variable	Total	Low	Medium	High	Р
Gender						0.863
	Female	100 (47)	32 (46)	33 (47)	35 (50)	
	Male	111 (53)	38 (54)	38 (54)	35 (50)	
Ethni	city					0.005
	Caucasian	120 (57)	35 (50)	34 (48)	51 (73)	0.004
	African American	87 (41)	32 (46)	37 (52)	18 (26)	0.004
	Hispanic	4 (1.9)	3 (4.3)	0 (0.0)	1 (1.4)	0.165
CVD Risk Factors						
	Hypertension	168 (81)	61 (88)	55 (80)	52 (75)	0.137
	Hyperlipidemia	131 (64)	40 (58)	46 (67)	45 (66)	0.492
	Diabetes	55 (26)	18 (26)	23 (33)	14 (20)	0.243
	Obese	118 (58)	45 (66)	44 (63)	29 (43)	0.015
	Current smoker	82 (39)	8 (12)	22 (31)	52 (74)	<0.001
	Never smoked	56 (27)	19 (28)	28 (40)	9 (13)	0.001
	Former smoker	71 (34)	42 (61)	20 (28)	9 (13)	<0.001
	Environmental Smoke*	41 (53)	19 (31)	13 (28)	8 (44)	0.425
	High FRS Category [†]	168 (80)	49 (70)	55 (78)	64 (91)	0.006
Medical History						
	Myocardial Infarction	73 (35)	19 (28)	25 (36)	29 (41)	0.225
	Stroke	22 (11)	7 (10)	9 (13)	6 (9)	0.705
	CABG/ PCI/ Stents [‡]	58 (28)	14 (20)	17 (24)	27 (39)	0.040
	Heart Failure	36 (17)	11 (16)	17 (25)	8 (12)	0.120
Medi	cation					
	Angiotensin-converting- enzyme inhibitor	112 (54)	35 (52)	42 (59)	35 (52)	0.604
	Angiotensin-receptor blockers	12 (6)	6 (9)	4 (6)	2 (3)	0.328
	Beta-blocker	129 (63)	40 (60)	42 (59)	47 (69)	0.400
	Calcium-channel blockers	45 (23)	17 (25)	15 (21)	13 (19.1)	0.668
	Diuretics	81 (39)	32 (48)	33 (47)	16 (24)	0.005

Early Progenitor Cell levels are Increased With Road Way Proximity

Adjusted Association between roadway proximity and CAC levels

	Total population, n=151		6-month residential		
			duration, n=73		
CAC population	β	p-value	β	p-value	
CAC-4 (CD31 ⁺ /34 ⁺ /45 ⁺ /AC133 ⁺)	-0.705	0.029*	-1.463	0.001*	
CAC-5 (CD31 ⁺ /AC133 ⁺)	-0.7 <mark>36</mark>	0.001*	-0.822	0.024*	
CAC-11 (AC133 ⁺)	-0.620	0.005*	-0.760	0.063	
CAC-14 (CD34 ⁺ /45 ⁺ /AC133 ⁺)	-1.260	0.007*	-1.011	0.014*	

The Green Heart Project:

Assess the impact of urban vegetation on air pollution and cardiovascular health.

INCREASE IN CVD MORTALITY

YEARS OF ASH BORER INFESTATION

Am J Prev Med 44, 139, 2013

Hypothesis

Exposure to neighborhood greenspace diminishes cardiovascular disease risk by decreasing levels of ambient air pollution

Study Aims

- Examine baseline cardiovascular health in two demographicallymatched neighborhoods with low greenspace
- Determine how increasing greenspace affects neighborhood characteristics
- Assess the impact of increasing neighborhood greenspace on cardiovascular health

Green for Good Project

ACKNOWLEDGEMENTS

Daniel J. Conklin, Ph.D. Timothy E. O'Toole, Ph.D. Petra Haberzettl, Ph.D. Sanjay Srivastava, Ph.D. Bradford Hill, Ph.D. Matthew Spite, Ph.D. Jong Min Lee, Ph.D. Jason Hellman, Ph.D. Laura Wheat, Ph.D.

C. Arden Pope III, Ph.D.

Louisville Healthy Heart Study Investigators

Natasha DeJarnett, Ph.D. Ray Yeager, Ph.D. Jordan Finch, MS James McCraken, Ph.D. John Myers, Ph.D. Deirdre Higdon, APRN Carrie Becher, MPH Bradley Wyatt, D.M.D. Wes Abplanalp, Ph.D. Daniel Riggs, MS Tiffany Ciszewski, M.Ed. Atul Chugh, M.D. Andrew DeFilippis, M.D. Ihab Hamzeh, M.D. Steve Wagner, M.D. David Tollerud, M.D. Sumanth Prabhu, M.D.

GRANT SUPPORT

EPA EM-83336701, P20, GM103492, DOD, ES019217, HL55477, HL59378, and P50, HL120163

ENVIRONMENTAL CARDIOLOGY

