Understanding Lead in Tap Water: Chemistry, Control, and Challenges

Stephen J. Randtke, Ph.D., P.E. Professor University of Kansas

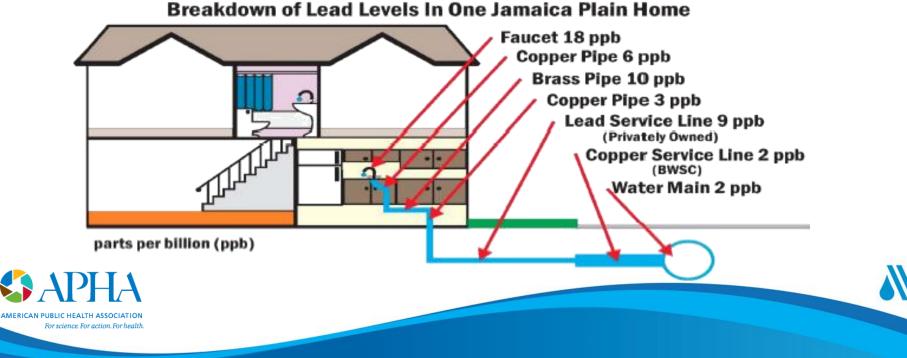
Rationale

Understanding the sources and forms of lead in drinking water, factors influencing lead release, and the challenges involved can help water utility and public health personnel:

- Diagnose problems
- Identify and evaluate solutions
- Communicate with the public and others
- Avoid unintended consequences
- Avoid future problems

Learning Objectives

- Identify sources and forms of lead in tap water, and methods for its control.
- Appreciate various challenges involved in controlling lead levels.
- Communicate more effectively with others regarding lead in tap water.


Overview

- Sources & Forms of Lead in Tap Water
- The Role of Water Quality
- Control Options
- Challenges
- Summary & Closing Thoughts

Sources of Lead in Tap Water

- Lead service lines (LSLs)
- Lead solder
- Plumbing components, esp. if brass
- Lead incorporated into scale deposits

Source: Sandvig (2008) Example illustrating the influence of plumbing materials and sampling protocol on observed lead value http://www.mwra.com/04water/html/1206leadtestimonytranscript.htm

Forms of Lead in Tap Water

- Lead may be
 - Dissolved
 - Complexed with carbonate, hydroxide, sulfide, organic material, etc.
 - Composed of, or adsorbed on, corrosion products
 - Lead particles

Pb⁺² **PbCO**₃ **PbSO** $PbO_{2}(s)$ PbCO₃

The Role of Water Quality

Impacts

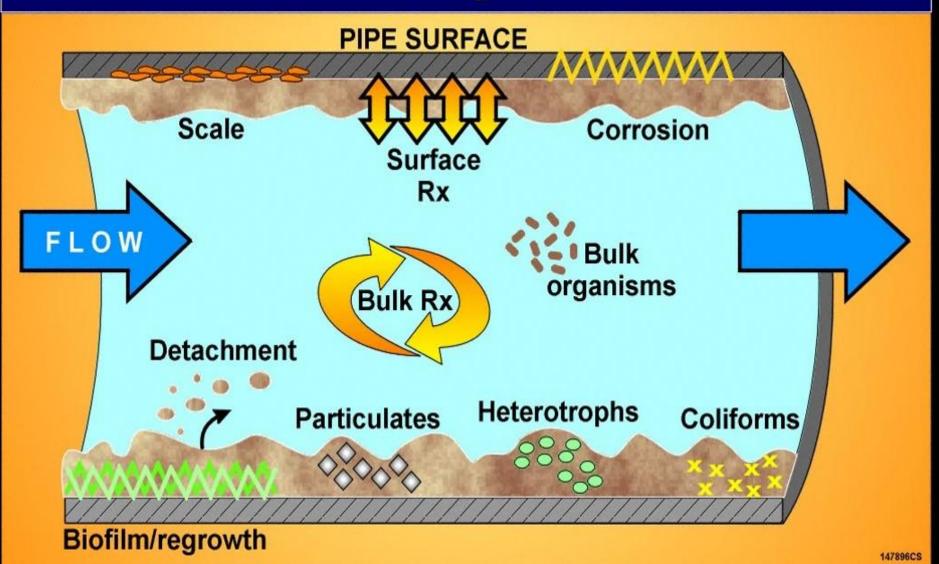
- Lead solubility
- Lead speciation
- Behavior of pipe scales containing lead

Parameters of interest

- pH, alkalinity, hardness
- Temperature
- Chloride and total dissolved solids (TDS)
- Residual chlorine
- Iron and manganese
- Organic matter
- Stability (chemical and biological)

Influences on Water Quality

- Changes in source water quality
- Changes in treatment
- Design and operation of the distribution system:
 - Pipe materials and condition
 - Water age
 - Water disinfection practices
 - Maintenance, e.g., flushing & pigging



Water Main Maintenance

Source: Journal AWWA, cover photos in Feb. 1983 and May 1980, resp.

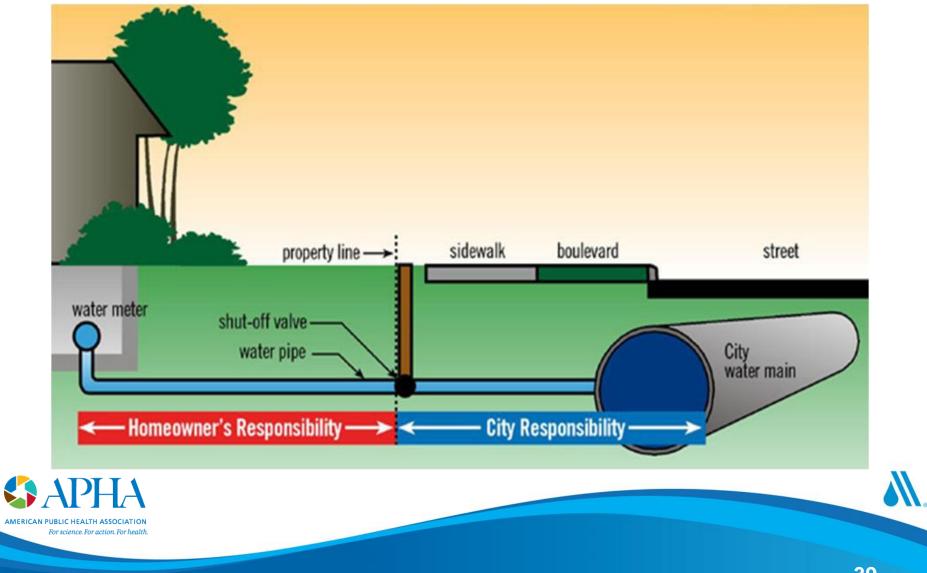
The Distribution System as Reactor

Control Options

- Corrosion control treatment (CCT)
 - Required for all systems subject to the Lead & Copper Rule (LCR)
 - The two most common methods are:
 - Adjusting pH and alkalinity
 - Orthophosphate addition

Control Option Selection

- Step 1 Understand water chemistry
- Step 2 Evaluate options
- Step 3 Implement selected option
- Step 4 Monitor and manage performance



Control Options (cont'd)

- LSL Replacement (LSLR)
 - Partial (PLSLR) or full (FLSLR) replacement
 - Most partial; homeowners reluctant to pay for full
 - Can cause short-term increases in lead levels
 - Expected to be beneficial over time, esp. full
 - Most to date voluntary
 - Proposal to require FLSLR by 2050 (NDWAC, 2015)
 - Noteworthy examples: Madison, Wisc. (mandatory FLSLR); Saskatoon, Sask. (FLSLR mandatory if the City replaces an LSL; voluntary if no problems occur)*

Typical LSL Ownership

Source: http://winnipeg.ca/waterandwaste/water/pipeResponsibilities.stm

Madison's FLSLR Program

- 66,000 connections (est.)
 - Approx. 11,000 LSLs, 5,600 customer-owned
- CCT found to increase lead levels
- City ordinance: MGO Section 13.18
 - All LSLs must be replaced within 10 years; sooner for higher risk sites
 - City to reimburse customer for half their cost, up to \$1,000 (average paid was \$670)
- Completed by Jan. 1, 2011
- Cost ~\$2,985 per FLSLR, incl. reimbursements (\$15.5M total)
- 90th-percentile Pb dropped from ~16 ppb to 2.6–3.6 ppb

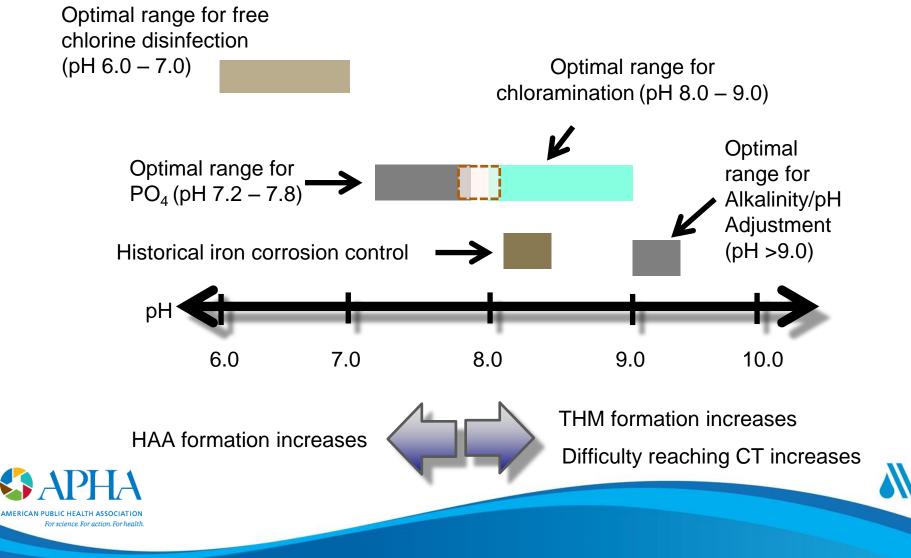
Please visit <u>http://www.cityofmadison.com/water/</u>, or review the presentation by Grande (ACE 2012) for more information.

Control Options (cont'd)

- Lining or coating LSLs
 - Options include PET linings and epoxy coatings
 - May be advantageous if replacement is difficult
- Options for consumers include:
 - Flush lines (gently) and draw water from the main
 - Install "lead-free" faucets, valves, etc.
 - Install (and maintain) filters certified for removal of the applicable forms of lead (particulate and/or dissolved)

Within the Home

- Is water in the home ... at particular faucets in routine use?
- Are newer lead-free faucets and other fixtures installed?
- Are faucet aerators cleaned regularly?
- Are treatment devices changing water chemistry?



Lead Control Challenges

- Understanding the chemistry
- Monitoring and data collection
- Maintaining water quality
- Regulatory uncertainty
- Public policy private property tensions
- Communicating effectively with all of the stakeholders
- Balancing competing objectives

Balancing Competing Objectives

Lead Control Challenges (cont'd)

- Economic, social, managerial, educational, and other challenges
- Reaching community consensus on a path forward – and deciding who will pay for it!

Summary & Concluding Remarks

- The chemistry of lead in tap water is complex, typically involving multiple sources and forms of lead, with many different factors influencing the levels present in a given sample.
- Controlling lead in tap water can be a challenging task on many different levels.

Summary & Concluding Remarks

- It is important to recognize and appreciate the complex nature of the issue, and the challenges involved, to:
 - Adequately understand the problem
 - Communicate effectively with stakeholders
 - Identify, and reach consensus on, the best option(s) for a given set of circumstances
 - Avoid unintended consequences

Summary & Concluding Remarks

 Do not hesitate to seek help – the sooner the better in most cases!

Acknowledgement

The assistance of Steve Via, AWWA Regulatory Affairs Manager, who provided helpful comments, suggestions, and several graphics included in this presentation, is gratefully acknowledged.

References & Suggested Reading

- APHA, AWWA, and WEF, 2012. Recommended Standards for the Examination of Water and Wastewater, 22nd ed., APHA: Washington, DC.
- AWWA, 2005. Managing Change and Unintended Consequences: Lead and Copper Rule Corrosion Control Treatment. Denver, Colo.: AWWA.
- AWWA, 2011. Internal Corrosion Control in Water Distribution Systems, M58 (2nd ed. expected fall, 2016)
- AWWA, 2014, Rehabilitation of Water Mains, 3rd ed., Manual of Water Supply Practices M28.
- Del Toral et al., Detection and Evaluation of Elevated Lead Release from Field Service Lines: A Field Study. Presentation to the Illinois Section AWWA, Feb. 3, 2014
- Grande, J., 2012, The cost of public health risk reduction: a program to eliminate all lead service lines in Madison, Wisconsin. Proc. Ann. AWWA Conf., AWWA: Denver, Colo.
- National Drinking Water Advisory Committee, Final Report of the Lead and Copper Working Group, Aug. 24, 2015.
- Sandvig et al., 2008. Contribution of Service Line and Plumbing Fixtures to Lead and Copper Rule Compliance Issues, Water Research Foundation (formerly AwwaRF).
- Schock, M., and D. Lytle, 2011. Internal Corrosion and Deposition Control, Ch. 20 in Water Quality & Treatment, 6th ed., Denver, Colo.: AWWA.

For science For action For healt