Presenter

David B. Peden, MD, MS, FAAAAI

Senior Associate Dean for Translational Research Chief, Division of Pediatric Allergy, Immunology & Rheumatology, **Department of Pediatrics** Director, Center for Environmental Medicine, Asthma & Lung Biology University of North Carolina at Chapel Hill School of Medicine & President-Elect, American Academy of Allergy, Asthma and

Immunology

For science. For action. For health.

ecoAmerica start with people

Disclosures

- FEDERAL FUNDING
- US Environmental Protection Agency
- National Institute of Environmental Health Sciences
- National Center for Advancing Translational Sciences
- National Institute of Allergy and Infectious Diseases
- <u>CORPORATE /ORGANIZATIONAL</u>
- Associate Editor, JACI
- Board of Directors, AAAAI
- Springer (Editor, Current Allergy and Asthma Reports)
- Up-to-Date
- Glaxo Smith Kilne (Clinical Trial)

Climate Change and Ambient Air Pollution

Outdoor pollution

General facts about pollutant exposure and asthma exacerbation

- Generally, increases in asthma exacerbation occurs 24-48 hours after the pollutant exacerbation
- Often, exacerbations occur with pollutant exposures less than current NAAQS standards
- Pollutants enhance response to allergen

Actions of Inhaled Pollutants

- Ozone
 - » <u>Acute airway</u> inflammation
 - » Increased airway reactivity
 - Temporarily
 immediate
 decrease in lung
 function
 - Increased airway reactivity (twitchiness)

- PM
 - » <u>Acute airway</u> inflammation
 - » Some increased airway reactivity (twitchiness)
 - » May decrease lung function
 - » CV effects
 - Coagulation
 - HRV

Asthmatics are more susceptible to ozone effects and have increased response to allergens after ozone exposure

A©	
AIR QUALITY INDEX	¢

Air Quality Index for Ozone

Index Values (Conc. Range)	Air Quality Descriptors	Cautionary Statements for Ozone
0 – 50 (0-60 ppb)	Good	No health impacts are expected when air quality is in this range.
51 – 100 (61-75 ppb)	Moderate	Unusually sensitive people should consider limiting prolonged outdoor exertion
101 – 150 (76-104 ppb)	Unhealthy for Sensitive Groups	Active children and adults, and people with respiratory disease, such as asthma, should limit prolonged outdoor exertion
151 – 200 (105-115 ppb)	Unhealthy	Active children and adults, and people with respiratory disease, such as asthma, should avoid prolonged outdoor exertion; everyone else, especially children should limit prolonged outdoor exertion.
201 – 300 (116-374 ppb)	Very Unhealthy	Active children and adults, and people with respiratory disease, such as asthma, should avoid all outdoor exertion; everyone else, especially children, should limit outdoor exertion.

Air Quality Guide for Particle Pollution

Adjective	Air Quality Index (AQI)	Concentration PM 2.5 (ug/m3- 1-3 hr. avg.)	centration PM 2.5 J/m3- 1-3 Ir. avg.)			
Good	0-50	0-38	None			
Moderate	51-100	39-88	Unusually sensitive people should consider reducing prolonged or heavy exertion			
Unhealthy for Sensitive Groups	101-150	89-138	People with heart or lung disease, older adults, and children should reduce prolonged or heavy exertion.	Increasing likelihood of respiratory symptoms in sensitive individuals, aggravation of heart or lung disease and premature mortality in persons with cardiopulmonary disease and the elderly.		
Unhealthy	151-200	139-351	People with heart or lung disease, older adults, and children should avoid prolonged or heavy exertion. Everyone else should reduce prolonged or heavy exertion	Increased aggravation of heart or lung disease and premature mortality in persons with cardiopulmonary disease and the elderly increased respiratory effects in general population.		
Very Unhealthy Alert	201-300	352-526	People with heart or lung disease, older adults, and children should avoid all physical activity outdoors. Everyone else should avoid prolonged or heavy exertion.	Significant aggravation of heart or lung disease and premature mortality in persons with cardiopulmonary disease and the elderly significant increase in respiratory effects in general population.		
Hazardous	300+	526+	People with heart or lung disease, older adults, and children should avoid all physical activity outdoors. Everyone else should avoid prolonged or heavy exertion.	Significant aggravation of heart or lung disease and premature mortality in persons with cardiopulmonary disease and the elderly; significant increase in respiratory effects in general population.		

PM-2.5 Nonattainment Areas (2006 Standard)

Anticipated increases in ozone levels in 2030 due to increased greenhouse gas emissions

Change in Average Daily Maximum Temperature

Change in Temperature (°F)

Change in Daily 8-hr Maximum Ozone

Climate-Attributable Change in Summer Season Daily 8-hr Maximum Ozone (ppb) Decreases Excess Ozone-Related Deaths

on Climate-Attributable Change in Ozone-Related Premature Deaths by County Decreases Increases 2^{2} , 2^{2}

Similar increases in particulate matter as well

Wildfires and woodsmoke

An emerging threat

Aerial Photos of exposed areas of NC with 2008 Eastern NC wildfires

Asthma ED visits and risk of adverse health outcomes with the wildfires

Climate Change: Impact on Allergens and Viruses

Singer BD, Ziska LH, Frenz DA, Gebhard DE, Straka JG (2005) Increasing Amb a 1 content in common ragweed (Ambrosia artemisiifolia) pollen as a function of rising atmospheric CO2 concentration. Functional Plant Biology 32, 667–670.

Change in the length (days) of ragweed pollen season as a function of frost-free days with latitude for the period 1995–2009.

Change in length of ragweed pollen season

Ziska L et al. PNAS 2011;108:4248-4251

23

Stuart Paynter, Peter D. Sly, Robert S. Ware, Gail Williams, Philip Weinstein

The importance of the local environment in the transmission of respiratory syncytial virus 🛧 🛧

Science of The Total Environment, Volume 493, 2014, 521–525

http://dx.doi.org/10.1016/j.scitotenv.2014.06.021

OF

MEDICINE

Potential Interventions

Personal and Societal

Fluticasone Propionate Protects against Ozone-Induced Airway Inflammation and Modified Immune Cell Activation Markers in Healthy Volunteers

Neil E. Alexis,^{1,2} John C. Lay,¹ Angela Haczku,³ Henry Gong,^{4,5} William Linn,^{4,5} Milan J. Hazucha,¹ Brad Harris,¹ Ruth Tal-Singer,⁶ and David B. Peden^{1,2}

Figure 2. The percent sputum neutrophils after O_3 exposure for each pretreatment dose of FP (0.5 or 2 mg) or placebo.

*p < 0.05 compared with placebo.

Mean Levels of Major Pollutants Before, During, and After the 1996 Summer Olympic Games as a Percentage of the National Ambient Air Quality Standard (NAAQS)

Friedman, M. S. et al. JAMA 2001;285:897-905.

Friedman, M. S. et al. JAMA 2001;285:897-905.

Table 1. Acute Asthma Events and Acute Nonasthma Events Among Children and Youth During the 1996 Summer Olympic Games Compared With the 1996 Summertime Baseline Period

		Acute Asthma Events Mean (SD) No. of Events Per Day		Acute Nonasthma Events			
	Type of Asthma Event			Mean (SD) No. of Events Per Day		1	
Data Source		Baseline Period*	Olympic Peried	% Change	Baseline Period*	Olympic Period†	% Change
Georgia Medicaid claims file	Emergency care and hospitalizations	4.23 (2.81)	2.47 (1.46)	-41.6	100.5 (18.6)	97.4 (16.4)	-3.1
Health maintenance organization	Emergency care, urgent care, and hospitalizations	1.36 (1.63)	0.76 (0.83)	-44.1	37.6 (19.6)	38.1 (18.4)	+1.3
Pediatric emergency departments	Emergency care and hospitalizations	4.77 (2.52)	4.24 (2.49)	-11.1	118.4 (20.5)	115.9 (15.9)	-2.1
Georgia Hospital Discharge Database	Hospitalizations	2.04 (1.53)	1.65 (1.50)	-19.1	19.7 (5.1)	19.9 (3.5)	+1.0
*Defined as June 21–July 18 †Defined as July 19–August	and August 5–September 4, 1996.	1, 1996.					

Ensemble-mean U.S.-average population-weighted annual 8-h-max O3 and PM2.5 in 2000, 2050, and 2100 under REF, POL4.5, and POL3.7 scenarios.

Published in: Fernando Garcia-Menendez; Rebecca K. Saari; Erwan Monier; Noelle E. Selin; *Environ. Sci. Technol.* **2015**, 49, 7580-7588. DOI: 10.1021/acs.est.5b01324 Copyright © 2015 American Chemical Society

Summary

- Asthma is characterized by increased response to a number of agents
 - » Air pollutants
 - » Allergens
 - » Viruses
- Climate Change will increase:
 - » Air pollutants
 - » Allergens
 - » Viral seasons
- It is still possible for:
 - » People to protect themselves from asthma attacks due to pollution and other agents
 - » Decrease the impact of climate change with environmental policy 30